Selected papers:
1. D. Xiao, F. Fang, C.C. Pain, I.M. Navon. A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications. Computer Methods in Applied Mechanics and Engineering, 2017, 317, 868-889.
2. D. Xiao, P. Yang, F. Fang, J. Xiang, C.C. Pain, I.M. Navon, Ming Chen. A non-intrusive reduced-order model for compressible fluid and fractured solid coupling and its application to blasting. Journal of Computational Physics. 2017, 330, 221-224.
3. D. Xiao. Error estimation of the parametric non-intrusive reduced order model using machine learning. Computer Methods in Applied Mechanics and Engineering. 2019, 355, 513-534.
4. D. Xiao, P Yang, F Fang, J Xiang, CC Pain, IM Navon. Non-intrusive reduced order modeling of fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering. 2016, 303, 35-54.
5. D. Xiao, F. Fang, A.G. Buchan, C.C. Pain, I.M. Navon, J. Du, G. Hu. Non-Linear model reduction for the Navier-Stokes Equations using residual DEIM. Journal of Computational Physics. 263(2014), 1-18.
6. D. Xiao, F. Fang, J. Du, C.C. Pain, I.M. Navon, A.H. ElSheikh, G. Hu. Non-Linear Petrov-Galerkin Methods for Reduced Order Modelling of the Navier-Stokes Equations using a Mixed Finite Element Pair. Computer Methods in Applied Mechanics and Engineering. 255 (2013),147-157.
7. D. Xiao, C.E. Heaney, L. Mottet, F. Fang, W. Lin, I.M. Navon, Y. Guo, O.K. Matar, A.G. Robbins,C.C. Pain, A Reduced Order Model for Turbulent Urban Flows Using Machine Learning, Building and Environment. 2019, 148, 323-337.
8. D. Xiao, F. Fang, J. Zheng, C.C. Pain, I.M. Navon, Machine learning-based rapid response tools for regional air pollution modelling. Atmospheric Environment. 2019, 199, 463-473.
9. Jinlong Fu, Dunhui Xiao, Dongfeng Li, Hywel R. Thomas, and Chenfeng Li. Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization. Computer Methods in Applied Mechanics and Engineering, 390, 114532, 2022.
10. F. Fang, C. Pain, I.M. Navon, A.H. Elsheikh, J. Du, D. Xiao. Non-Linear Petrov-Galerkin Methods for Reduced Order Hyperbolic Equation and Discontinuous Finite Element Methods. Journal of Computational Physics. 234(2013) 540-559.
11. R Fu, D Xiao*, IM Navon, F. Fang L. Yang, S. Cheng, C Wang, A non-linear non-intrusive reduced order model of fluid flow by Auto-Encoder and self-attention deep learning methods, International Journal of Numerical Methods in Engineering. Accepted. 2023.
12. J Fu, D Xiao*, R Fu, C Li, C Zhu, R Arcucci, IM Navon, Physics-data combined machine learning for parametric reduced-order modelling of nonlinear dynamical systems in small-data regimes, Computer Methods in Applied Mechanics and Engineering. 2023, 404, 115771.
13. D Xiao, F Fang, AG Buchan, CC Pain, IM Navon, A Muggeridge, Non-intrusive reduced order modelling of the Navier–Stokes equations, Computer Methods in Applied Mechanics and Engineering 293, 522-541, 2015.
14. D Xiao, F Fang, CE Heaney, IM Navon, CC Pain, A domain decomposition method for the non-intrusive reduced order modelling of fluid flow, Computer Methods in Applied Mechanics and Engineering 354, 307-330, 2019.