科学研究
High-Order Singular Value Decomposition in Tensor Analysis
邀请人:张晓昱
发布时间:2024-06-28浏览次数:


题目:High-Order Singular Value Decomposition in Tensor Analysis

报告人:张安如 教授 (杜克大学)

地点:致远楼101室

时间:2024年6月28日 星期五 10:30-11:30

摘要:The analysis of tensor data, i.e., arrays with multiple directions, is motivated by a wide range of scientific applications and has become an important interdisciplinary topic in data science. In this talk, we discuss the fundamental task of performing Singular Value Decomposition (SVD) on tensors, exploring both general cases and scenarios with specific structures like smoothness and longitudinality. Through the developed frameworks, we can achieve accurate denoising for 4D scanning transmission electron microscopy images; in longitudinal microbiome studies, we can extract key components in the trajectories of bacterial abundance, identify representative bacterial taxa for these key trajectories, and group subjects based on the change of bacteria abundance over time. We also showcase the development of statistically optimal methods and computationally efficient algorithms that harness valuable insights from high-dimensional tensor data, grounded in theories of computation and non-convex optimization.

报告人简介:张安如老师是杜克大学Eugene Anson Stead, Jr. M.D.副教授,杜克大学生物统计及生物信息系、计算机系副教授,同时也任职于杜克大学电子与计算机工程系、统计科学系。他本科毕业于北京大学,博士毕业于宾夕法尼亚大学,师从蔡天文教授。张安如老师获得过COPSS Emerging Leader Award、IMS Tweedie Award、ASA Gottfried E. Noether Junior Award、NSF CAREER Award等诸多奖项,他的研究方向有张量学习、生成模型、高维统计等。

欢迎各位参加!