科学研究
An Approximate Empirical Bayesian Method for Large-scale Linear-Gaussian Inverse Problems
发布时间:2018-05-04浏览次数:

题目:An Approximate Empirical Bayesian Method for Large-scale Linear-Gaussian Inverse Problems

报告人:李敬来教授(上海交通大学)

地点:致远楼101室

时间:2018年5月4日下午2:00-3:00

报告摘要:We study Bayesian inference methods for solving linear inverse problems, focusing on hierarchical formulations where the prior or the likelihood function depend on unspecified hyperparameters. In practice, these hyperparameters are often determined via an empirical Bayesian method that maximizes the marginal likelihood function, i.e., the probability density of the data conditional on the hyperparameters. Evaluating the marginal likelihood, however, is computationally challenging for large- scale problems. In this work, we present a method to approximately evaluate marginal likelihood functions, based on a low-rank approximation of the update from the prior covariance to the posterior covariance. We show that this approximation is optimal in a minimax sense. Moreover, we provide an efficient algorithm to implement the proposed method, based on a combination of the randomized SVD and a spectral approximation method to compute square roots of the prior covariance matrix. Several numerical examples demonstrate good performance of the proposed method.

欢迎各位参加!