科学研究
The Growth of Tate-Shafarevich Groups in Z/pz-Extensions
邀请人:周海港
发布时间:2021-11-18浏览次数:

题目:The Growth of Tate-Shafarevich Groups in Z/pz-Extensions

报告人:欧阳毅 教授(中国科技大学)

地点:腾讯会议室

时间:2021年11月19日(星期五) 14:00-15:00

摘要:Let p be a prime number. Kęstutis Česnavičius proved that for an abelian variety A over a global field K, the p-Selmer group Selp(A/L) grows unboundedly when L ranges over the Z/pZ-extensions of K. Moreover, he raised a further problem: is the dimension of Sha(A/L)[p] also unbounded under the above conditions? In this talk we give a positive answer to this problem in the case p not equal char K. This result enable us to generalize the work of Clark, Sharif and Creutz on the growth of potential Sha in cyclic extensions. We also answer a problem poposed by Lim and Murty concerning the growth of the fine Tate-Shafarevich groups. This is joint work with Jianfeng Xie.

线上平台:腾讯会议 会议号 963266001 密码:440191

欧阳毅教授简历:

中国科学技术大学教授,博士毕业于明尼苏达大学,研究方向是数论和算术几何特别是p-adic 表示理论及其与Iwasawa理论的联系。由于拔尖学生培养方面的工作,获评安徽省教学名师,并获宝钢优秀教师奖,基础学科拔尖学生培养计划优秀导师奖等荣誉。

欢迎各位师生参加!