学术报告
-
Study on Boundary Layers报告人:王亚光教授(上海交通大学)题目:Study on Boundary Layers时间:2012年6月26日,星期二下午2:00—3:00地点:数学系致远楼10王亚光教授(上海交通大学)数学系致远楼1022012年6月26日,星期二下午2:00—3:00
-
Well-posedness of degenerate parabolic-hyperbolic equations报告人:李亚纯教授(上海交通大学)题目:Well-posedness of degenerate parabolic-hyperbolic equations时间:2012年6月26日,星期二下午3:00—4:00地点:数学系致远楼10李亚纯教授(上海交通大学)数学系致远楼1022012年6月26日,星期二下午3:00—4:00
-
Blow-up for the Heat Equation with Boundary Flux Governed by Nonlinear Memory报告人:邓铿教授(University of Louisiana at Lafayette, USA)题目: Blow-up for the Heat Equation with Boundary Flux Governed by Nonlinear Memory时间:2012年6月24日(星期日)上午8:30—9:30地点:数学系致远楼10邓铿教授(University of Louisiana at Lafayette, USA)数学系致远楼1072012年6月24日(星期日)上午8:30—9:30
-
TBA报告人:关波教授(Ohio State University, USA)题目: TBA时间:2012年6月24日(星期日)上午11:30—12:30地点:数学系致远楼10关波教授(Ohio State University, USA)数学系致远楼1072012年6月24日(星期日)上午11:30—12:30
-
The generalized Jang equation and blowup behaviors报告人:韩青教授(University of Notre Dame, USA)题目: The generalized Jang equation and blowup behaviors时间:2012年6月24日(星期日)上午10:30—11:30地点:数学系致远楼10韩青教授(University of Notre Dame, USA)数学系致远楼1072012年6月24日(星期日)上午10:30—11:30
-
International Workshop on Nonlinear Ellipticand Parabolic Partial Differentia...23June, Saturday08:50-09:00Opening CeremonyMorning SessionChair: Lou Yuan09:00-9:50Chen Xinfu (University of Pittsburgh)Defective Boundary Condition Arising from A Thin Coating Problem09:50-10:20Tea Time10:20-11:10Tao Youshan (Donghua University )A Chemotaxis-haptotaxis Model for Cancer Invasion11:10-12:00Elaine Crooks (Swansea University)Front-like Entire Solutions for Equations with Convectio...
-
Bi-module ProblemsIn this talk we define two algebraic structures, namely Bi-module problems and Bi-co-module problems, and their representation categories. This is a joint with Xu Yunge (Hubei University张英伯教授(北京师范大学)数学系(致远楼)1072012年6月27日(周三)13:30-14:30
-
On existence theorems of nonlinear partial differential systems in R^nBased on complex analysis, we prove a general (local, semi-global) existence of nonlinear partial differential systems with principle part of mixed higher order Cauchy-Riemann operators in dimension two, and then we apply the same framework set forth in dimension two and Newtonian potentials to proved a general (local, semi-global) existence of nonlinear partial differential systems with principle part of higher order Laplace operators in any dimensions:潘一飞教授6月26日下午15:30-17:30